Self-Powered Magnetothermal Fluid Pump, Phase II

Completed Technology Project (2014 - 2016)


Project Introduction

Advances in the capabilities of electronics have enabled high power density devices. However, even in light of advances in electronics efficiency figures, the increased power density operational points result in the generation of excess heat. In order to maintain efficiency and to product sensitive components from thermally-induced failure, intelligent rejection of thermal energy is often a critically limiting constraint in system development. Novel concepts for thermal management are particular necessary in applications with finite energy stores, such as long-duration space missions. The Prime Photonics magnetothermal fluid pump provides for game-changing, autonomous self-powered thermal management systems. Our self-powered pump converts excess thermal energy into point-of-use mechanical energy with a low mass insertion penalty. The operational frequency of the pump is proportional to the magnitude of the thermal gradient, supplying additional pump capacity in response to increased thermal loads.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Prime Photonics, LC	Lead Organization	Industry	Blacksburg, Virginia
Marshall Space Flight Center(MSFC)	Supporting Organization	NASA Center	Huntsville, Alabama

Self-Powered Magnetothermal Fluid Pump, Phase II

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	3
Technology Areas	
Target Destinations	

Small Business Innovation Research/Small Business Tech Transfer

Self-Powered Magnetothermal Fluid Pump, Phase II

Completed Technology Project (2014 - 2016)

Primary U.S. Work Locations	
Alabama	Virginia

Project Transitions

O

April 2014: Project Start

April 2016: Closed out

Closeout Summary: Self-Powered Magnetothermal Fluid Pump, Phase II Projec t Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/137456)

Images

Briefing Chart Image Self-Powered Magnetothermal Fluid Pump, Phase II (https://techport.nasa.gov/imag e/126181)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Prime Photonics, LC

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

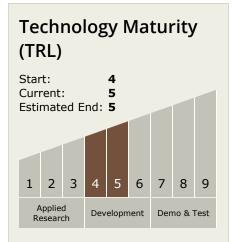
Program Manager:

Carlos Torrez

Principal Investigator:

David Gray

Co-Investigator:


David K Gray

Self-Powered Magnetothermal Fluid Pump, Phase II

Completed Technology Project (2014 - 2016)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - ☐ TX03.3 Power

 Management and

 Distribution
 - □ TX03.3.2 Distribution and Transmission

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

